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Numerous population studies and experimental models suggest that helminth infections
can ameliorate immuno-inflammatory disorders such as asthma and autoimmunity.
Immunosuppressive cell populations associated with helminth infections include Treg
and alternatively-activated macrophages. In previous studies, we showed that both CD41

CD251 Treg, and CD4– MLN cells from Heligmosomoides polygyus-infected C57BL/6 mice
were able to transfer protection against allergic airway inflammation to sensitized but
uninfected animals. We now show that CD4–CD191 MLN B cells from infected, but not
naı̈ve, mice are able to transfer a down-modulatory effect on allergy, significantly
suppressing airway eosinophilia, IL-5 secretion and pathology following allergen
challenge. We further demonstrate that the same cell population can alleviate auto-
immune-mediated inflammatory events in the CNS, when transferred to uninfected mice
undergoing myelin oligodendrocyte glycoprotein(p35–55)-induced EAE. In both allergic and
autoimmune models, reduction of disease was achieved with B cells from helminth-
infected IL-10!/! donors, indicating that donor cell-derived IL-10 is not required. Pheno-
typically, MLN B cells from helminth-infected mice expressed uniformly high levels of
CD23, with follicular (B2) cell surface markers. These data expand previous observations
and highlight the broad regulatory environment that develops during helminth infections
that can abate diverse inflammatory disorders in vivo.
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Introduction

The question of if, and how, infection may modulate the severity

of allergic and autoimmune pathologies is steadily gaining

prominence, reflecting the continuing rise in prevalence of

immunopathologies, and the evidence for an inverse correlation

between viral, bacterial and parasitic infections with rising

asthma, multiple sclerosis and Crohn’s disease [1–6].

Until recently, the Th1-Th2 dichotomy was invoked to explain

the regulation of immunopathologic disease. Thus, reduced Th1-

associated autoimmune pathologies were observed following

Th2-inducing helminth infections [7–9], while, Th2-driven

allergic reactions are reduced following infection with Th1-

inducing pathogens [10–12]. However, Th2-inducing human

helminth infections are often protective against Th2-mediated

responses to allergen provocation [13–15], while autoimmunity

can be blocked by some bacterial pathogens [16].
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These studies have led beyond the Th1/Th2 paradigm to a

recognition that a balance between immunoregulatory and

effector mechanisms is required to keep allergic or autoimmune

propensities in check [17–21]. Furthermore, we, and others, have

shown that parasitic infections can expand Treg cell populations

[22–27], including the demonstration that adoptively transferred

H. polygyrus-induced CD41CD251 Treg cells suppress inflam-

mation following airway allergen challenge [23].

Although the Treg (CD41CD251Foxp31) is a central

player in the immunoregulatory network, in the contexts of both

airway allergy [28, 29] and autoimmune disease [21, 30], this is

not the only cell population capable of down-regulating immune

responsiveness. Suppressive, alternatively activated macrophages

are able to directly block T-cell proliferation, and are selectively

enhanced by helminth infection [31–34]. Recently evidence has

emerged for B cells expressing regulatory function to control

immune pathologies [35–39], and in the context of helminth

infections in mice [40–43] as well as humans [44].

We accordingly set out to test whether B cells, generated

during chronic H. polygyrus infection, were capable of regulating

allergen-induced airway inflammation (AAI), as might be

predicted from our earlier finding that CD4! MLN cells (MLNC)

from infected C57BL/6 mice could transfer protection to unin-

fected, allergen-sensitized animals [23]. As shown here,

CD4!CD191 B cells from chronically infected mice can indeed

suppress airway inflammation in uninfected recipients, reducing

bronchoalveolar IL-5, eosinophilia and airway pathology.

Furthermore, the same population of CD4!CD191 B cells from

infected donors can, on transfer, significantly reduce the severity

of disease during EAE in uninfected recipients. We demonstrate

that in neither setting is IL-10 required from the donor B-cell

population to protect against pathogenic inflammation of these

different aetiologies in vivo.

Results

Both CD4þ and CD4! MLNC from H. polygyrus-infected
C57BL/6 mice can mediate suppression

H. polygyrus is a natural enteric-dwelling nematode parasite

which establishes a chronic infection in many strains of mice

[45]. We have previously shown that H. polygyrus-infected mice

display significantly reduced airway inflammatory responses to

OVA or Der p1 allergen provocation in BALB/c and C57BL/6

mice, respectively [23]. Notably, in this system suppression of the

allergic outcome was not associated with a shift from Th2 to Th1

responsiveness. In fact, as demonstrated by adoptive transfer,

MLN CD41CD251 Treg cells from infected animals of both strains

were able to transfer protection from airway inflammation in

uninfected recipients [23].

An intriguing feature of our earlier study [23] was that, in the

C57BL/6 strain, CD4!MLNC were also able to transfer significant

protection against airway allergy. To investigate this further, we

first extended studies in the transfer model (Fig. 1A) to compare

airway cell infiltration and inflammatory cytokine production in

allergic mice receiving CD41 (>93% pure) or CD4! (>97%)

MLNC from H. polygyrus-infected mice, employing an allotypic

difference in CD45 (Ly5) to permit subsequent tracking of

transferred cells [46]. Allergen-sensitized C57BL/6 (CD45.2/

Ly5.21) mice received 4# 106 CD41 or CD4! MLNC from

infected congenic B6-CD45.1 donors i.v. 7 days before the first of

two (day 28 and day 31) intratracheal Der p1 airway challenges.

Mice were assessed for airway inflammation on day 32.

Der p1 airway challenge of Der p1-sensitized mice incited a

substantial cellular influx into the BALF with a significant

proportion of eosinophils, characteristic of allergen-induced

inflammation. As previously observed in the C57BL/6 system

[23], CD41 and CD4! MLNC showed equivalent efficacy at

reducing total airway cell infiltration (Fig. 1B) and eosinophilia

(Fig. 1C) in recipient mice. Moreover, the two cell populations

were broadly similar in reduction of IL-5 (Fig. 1D) and eotaxin

(Fig. 1E) in the BALF, consistent with the attenuated degree of

eosinophilia.

Because the transferred CD4! population contains approxi-

mately 70% B cells, we also examined whether total and allergen-

specific antibody responses were altered in recipient animals.

Neither total nor Der p 1-specific IgE levels showed significant

differences between control allergic mice and those receiving cell

transfers (Fig. 1F and G), as found previously for BALB/c mice

[23]. IgG isotype analysis did indicate a reduction in Th2-asso-

ciated IgG1, and a small increment in Th1-linked IgG2a in the

CD4! MLNC recipients (Fig. 1H and I), but not at levels that

achieved statistical significance.

In addition to the suppression of airway eosinophilia and local

IL-5 and eotaxin secretions, airway pathology was also atte-

nuated. As expected, a dense layer of cells was observed

surrounding the bronchioles and arteries of Der p1-sensitized

mice following Der p1 challenge (Fig. 2A). The adoptive transfer

of CD41 or CD4! cells from chronically infected donors

substantially decreased peri-bronchial and peri-arterial inflam-

mation following Der p1 challenge (Fig. 2A). In a further

experiment it was confirmed that down-modulation of airway

inflammation and pathology was affected only by CD4! cells

from infected, and not uninfected, mice (Fig. 2B).

CD4þ and CD4! cells from infected donors traffic to
the airways

The CD45 congenic marker permitted us to track the location of

donor cells in recipient mice at the end-point of the experiment.

At day 32, 11 days after the transfer of cells from infected donors,

we found a significant accumulation of donor CD41 and CD4!

cells in the airspace, lung tissue and draining thoracic LNs of Der

p1-challenged mice (Fig. 3). These data suggest that both CD41

and CD4! populations migrate to the sites and local draining

nodes responding to allergen provocation and suppress allergen-

induced IL-5 and eotaxin secretion, reducing the recruitment of

eosinophils.
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CD19þ B cells from infected WT and IL-10!/! mice
suppress allergen-induced airway eosinophilia

MLNC from chronically-infected mice consist of approximately

40% CD41 T cells (Supporting Information Fig. 1A, lower left

panel) and a similar proportion of CD191 B Cells (Supporting

Information. Fig. 1A, lower right panel). We therefore purified

CD191 B cells, representing the majority of the CD4! population,

from the MLN of naı̈ve and chronically infected WT C57BL/6

mice for functional testing in the transfer model (Supporting

Information Fig. 1B). Because of the prominent role of IL-10 in

many B-cell regulatory functions [40, 41, 47] we also purified

CD191 B cells from chronically infected IL-10!/! mice for assay

in the same system.

CD191 B cells were transferred from the MLN of naı̈ve or

infected mice, into Der p1-sensitized recipients, 7 days before the

first of two Der p1 airway challenges. Mice receiving CD191 cells

from chronically infected donors had significantly fewer cells

infiltrating the airspaces following Der p1 challenge while CD191

cells from uninfected donors (naı̈ve) had no effect on airway

infiltration (Fig. 4A). Similarly, airway eosinophilia was signifi-

cantly ablated by the introduction of B cells from infected, but not

naı̈ve, donors. Importantly, the ability of B cells from infected

mice to block allergic reactions was evident in both

total cell numbers and eosinophilia irrespective of IL-10

competence.

Furthermore, secretions of IL-5 and eotaxin recovered from

the airspaces were also significantly decreased following the
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Figure 1. CD41 and CD4! cells from helminth-infected donors can suppress Der p1-induced airway inflammation. 4#106 purified CD41 and CD4!

MLNC from 28 day H.polygyrus-infected B6-CD45.1 mice were injected i.v. into C57BL/6 (CD45.21) recipients that had received Der p1
immunizations 7 and 21 days earlier (day 0 and 14 in (A), respectively). Seven and 10 days after transfer (days 28 and 31, respectively), the mice
were challenged with Derp1 and measurements made 1 day later (day 32). D:D denotes mice receiving Der p1 immunizations and challenge. Naı̈ve
indicates uninfected, non-immunised or challenged mice. (A) Schematic of the transfer protocol and flow cytometry plots showing the purity of
the MACS-sorted CD41 and CD4!MLNC prior to transfer; (B) total cell numbers, (C) eosinophil numbers, (D) IL-5 levels and (E) eotaxin levels in BAL,
(F) total IgE, (G) Der p 1-specific IgE, (H) Der p 1-specific IgG1 and (I) Der p 1-specific IgG2a in serum. Data are means7SE from five individual mice
per group. Statistical analysis by the Mann–Whitney test: !po0.04; !!po0.02; !!!po0.004.
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transfer of B cells from chronically infected WT or IL-10-deficient

donors, while transfer of naı̈ve B cells had no effect (Fig. 4B). In

contrast, B-cell transfers exerted no influence on the overall levels

of serum IgE, or on allergen-specific IgE responses, as observed

previously in recipients of total CD4! cell populations, and

neither total nor allergen-specific IgA were significantly altered in

recipients of B cells from naı̈ve or infected mice (data not shown).

CD4þ and CD4! cells from infected donors modulate
the severity of MOG(p35–55)-induced EAE

The capacity of helminth-induced cell populations to regulate

inflammatory disorders was further examined in an autoimmune

setting, in which myelin oligodendrocyte glycoprotein (MOG)

reactive T cells cause EAE. Using the CD45.1/2 adoptive transfer

system, we first tested whether CD41or CD4! populations from

the MLN of chronically infected B6-CD45.1 mice could influence

disease progression in uninfected MOG(p35–55)-immunized

C57BL/6-CD45.2 recipients. Mice were immunized on day 0

with MOG(35–55) in CFA and received either sterile PBS, 4#106

CD41 or 4# 106 CD4! cells from H. polygyrus-infected donors on

day 1. Pertussis toxin was given to all mice on days 0 and 2

(Fig. 5A). Progression of disease was monitored daily and

assessed using a clinical score based on tail, hind limb and front

limb paralysis as described in Materials and methods.

In two replicate experiments, CD41 cells from infected donors

were able to delay the onset of EAE and to reduce the severity of

clinical signs observed in the first 2 wk (Fig. 5B). Beyond this

time, in the recovery phase, the effect of CD41 cell transfer was

not reproducibly significant. However, MOG(p35–55)-immunized

mice receiving CD4! cells from infected donors consistently and

significantly had a markedly lower clinical score, with a lower

incidence and maximal clinical score throughout the time course

observed, with an increased recovery rate in both experiments

(Fig. 5C). The transfer of either CD41 or CD4! cells from

H. polygyrus-infected mice did not alter the balance of Th1/Th2

responsiveness, as judged by unchanged MOG-specific recall

splenocyte IFN-g and IL-4 responses in recipient mice (data not

shown).

CD4þ and CD4! cells from infected donors show
similar long-term survival following transfer

In view of the more extended protection against EAE accorded by

CD4! cells, we compared the trafficking and survival of donor

(CD45.1) cells in recipient mice 34 days after i.v. transfer of

chronically infected MLNC. We have established that transferred

B cells disseminate to many lymphoid tissues, but do not enter

the CNS even under conditions of EAE (S M Anderton,

unpublished). We therefore compared the numbers of donor
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Figure 2. Reduced airway pathology and inflammation following adoptive transfer of CD4! cells from helminth-infected donors. Experiments
were performed as in Fig. 1A with transfer of purified CD41 and CD4! MLNC from 28 day H.polygyrus-infected mice. (A) On day 32 lung sections
were stained with hematoxylin and eosin to measure cellular inflammation within the broncho-vascular bundles following airway challenge. D:D
denotes mice receiving Der p1 immunizations and challenge. Four individual mice are shown for each group. (B) Experiments were performed as in
Fig. 1A with transfer of CD4! cells from naı̈ve or 28 day H.polygyrus-infected mice. Airway inflammation was measured by total cell and eosinophil
numbers in BAL. Statistical analysis by the Mann–Whitney test: !!po0.02.
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genotype CD41CD45.11 (Fig. 5D) and CD4!CD45.11 (Fig. 5E)

cells recovered from the spleen and LN draining the site of

immunization almost 5 wk after transfer. These data indicate that

both cell types enjoy similar survival, and most likely proliferate,

within the adoptive host.

CD4þ cells from infected WT and IL-10!/! mice also
reduce the severity of EAE

To test the ability of helminth-induced B cells to modulate EAE, we

adoptively transferred CD191 cells from naı̈ve, chronically infected

WT and IL-10!/! donors, into the tail vein of MOG(35–55)-

immunized recipients. MOG(35–55)-immunized mice receiving

CD191 cells from infected donors, irrespective of IL-10 sufficiency,

were significantly protected from EAE (Fig. 6). The onset of clinical

signs was delayed with the maximal clinical score substantially

reduced following the introduction of B cells from infected donors.

The complete recovery was increased by 40 and 100%, at 30 days

post-immunization, following the adoptive transfer of B cells from

infected WT or IL-10!/! donors, respectively.

CD4þ B cells from infected mice are phenotypically
similar to B2 cells and express high levels of CD23

The murine B-cell compartment is heterogeneous and can be

separated into distinct subsets using a number of parameters

including maturation stage, surface phenotype, anatomical

localization and state of activation. CD5 and B220 have

commonly been used to distinguish B1 and B2 cells, respectively

[48] and CD23, the intermediate affinity IgE FcR, used to identify

B-cell activation [49].

To characterise the CD191 B cells from the MLN of chronically

infected mice, unseparated MLN and CD19-purified B cells were

recovered and stained with CD19, CD5 and B220 to differentiate

between B1 (CD5int B220int) and B2 (CD5lowB220hi) B-cell

populations. In addition we stained for CD43, a marker known to
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be expressed by splenic B1 cells [50]. Using either unseparated

MLN or CD191 purified cells, the proportion of B1 cells in the

MLN diminished following 28 days of infection with H. polygyrus,

with very few CD431 cells remaining (Fig. 7A). CD191 B cells

from infected mice, moreover, showed uniformly elevated levels

of CD23, the low affinity FceR (Fig. 8B), with MFI of infected cells

approximately twofold higher than cells from uninfected mice

(18057130 versus 854719, p 5 0.0073). Infected MLNC

contained a higher proportion of IgD-negative B cells, although

little change was observed in CD21 expression (Fig. 8C). Few

CD1d-positive B cells were observed in either naı̈ve or infected

MLNC populations (data not shown).

CD4þ B cells from naı̈ve and infected mice show
similar levels of activation

To assess whether infection resulted in a generalised

activation of mucosal-associated B cells, we also measured

expression of CD69 and CD86, two surface markers up-regulated

on activated B cells. Neither showed increased levels in B cells from

infected mice, and indeed a small downshift in CD69 expression

was evident in the population exposed to infection (Fig. 7D).

Responsiveness to non-specific activation (PMA with ionomycin) or

TLR ligation (with CpG) was also assessed, in terms of IL-6 and

IL-10 cytokine production. In general, whether testing MLN or
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splenic populations, B cells from infected mice showed higher

responses, particularly when co-stimulated with anti-CD40 anti-

body. However, the incremental effect was quite modest and there

was no clear qualitative difference between the B-cell sets from

naı̈ve or infected mice (Fig. 8).

Discussion

Helminth parasites are strongly associated with polarized Th2

responses [51–54], and have evolved a spectrum of anti-

inflammatory mechanisms that limit immunopathology during
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chronic infection [31, 55]. Among these suppressive pathways,

the role of CD41CD251 Treg has most clearly been substantiated

[23, 25, 26, 56]. However, during infection alternatively

activated macrophages, with the ability to dampen T-cell

responses [33, 34, 57], along with dendritic cells providing

negative signals to T cells [58], collectively suggest that a

broader-based regulatory environment takes shape during

helminth infections. Several studies in a range of systems have

identified B-cell populations with significant regulatory potential

[35, 38, 47, 59, 60]. Recent reports demonstrating regulatory

activity of B cells in murine helminth infections [40, 43] have

been followed by a report associating CD191 B cells in helminth-

infected MS patients with limited disease progression [44].

We accordingly tested whether B cells with regulatory capa-

city are generated by a chronic helminth infection, extending our

earlier findings in the C57BL/6 strain, that both CD41CD251 and

CD4! subsets from H. polygyrus-infected mice are able to down-

modulate allergic inflammation [23]. We found that, within the

MLNC of chronically-infected mice, the CD191 B-cell population

exerts a suppressive effect on airway allergy, and that suppres-

sion is mediated in an IL-10-independent manner. Importantly,

the inhibition of allergy cannot be attributed to a shift towards

Th1 responsiveness, as it is well-established that H. polygyrus

drives a strong Th2 response [23–25], and in our experiments no

diminution in IL-4 production or IgE levels was observed.

Furthermore, the same CD191 subset is able to down-regulate

inflammatory pathology in the Th1/Th17-mediated autoimmune

model of EAE, also in the absence of IL-10 capability. Antibody

levels in recipient animals were not significantly altered by B-cell

transfer, suggesting that direct interactions with host cells may be

necessary for suppression. Phenotypically, CD191 B cells from

infected donors are predominantly follicular-type B2 cells (B2201

CD5!CD43!), and in vivo these cells are able to migrate to

inflammatory sites and local draining LN following adoptive

transfer.

Evidence is now building for an important role of B cells in

regulation during helminth infections, acting to cap the magni-

tude of inflammatory responses. Earlier work had shown that

Schistosoma mansoni infection of either mMT mice [61, 62] or

JHD mice [63], both of which are deficient in B cells, leads to

increased fibrosis, failure to down-modulate egg-induced granu-

lomas in the liver (a feature observed in B-cell-competent mice)

and a polarized Th1 response. These studies suggest that B cells

assist in restraining potentially pathogenic responses, a role also

ascribed to Treg cells in S. mansoni infection [64, 65]. More

recently, B cells taken from S. mansoni-infected donors were

shown to confer protection from Pen V-induced anaphylaxis and

airway allergy [43], in an IL-10-dependent manner [40], while

IL-10-secreting B cells were found to reduce antigen presentation

and T-cell-driven inflammation during filarial helminth infect-

ions [41].

B cells operate interactively across the whole spectrum of

immune system components [66], resulting in both direct and

indirect influences on the T-cell compartment. Functional B-cell

regulation of immunopathology has been established in EAE

[47, 67, 68], chronic intestinal inflammation [35] and systemic

lupus erythematosis [69, 70]. As antigen-presenting cells, B cells

may initiate [71] or tolerise [72] the T-cell response. Further-

more, B cells can modify dendritic cell-orchestrated T-cell

responses [73], indirectly interfering with T-cell activation and

effector function. Most recently, and in the context of H. poly-

gyrus infection, B cells have been shown to be major sources of
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key cytokines, including IL-2, IL-4 and TNF-a [74, 75]. In addi-

tion, of course, B cells are responsible for the production of

antibodies, which are known to contribute towards immunity to

H. polygyrus in mice [76]. It is interesting to note that we

detected regulatory activity in B cells from C57BL/6 mice,

which are fully susceptible to H. polygyrus and are slow to mount

an antibody response, rather than from the more rapidly

responding BALB/c strain, which develops faster immunity to the

parasite.

In contrast to the above studies, we found that IL-10 is

dispensable for H. polygyrus-induced B-cell protection from both

airway allergy and EAE. Thus by both surface markers (CD5!,

CD23hi) and by IL-10 independence, these helminth-induced

Breg are dissimilar to the ‘‘B10’’ IL-10-producing regulatory

B cells of the B1 or marginal zone type [37, 68]. We cannot

exclude a role for host IL-10 mediating protection, a scenario

observed with the adoptive transfer of OVA-specific Treg in a

similar allergy model [77], or more closely related to these

studies, adoptive transfer of apoptotic cell-exposed B cells licen-

sing the generation of host IL-10-secreting T cells [59]. Varying

dependence on IL-10 from helminth-induced B cells may reflect

the specific target organs or tissues studied in the different

systems. Moreover, immunological compensation may occur in

CD191 cells from H. polygyrus-infected IL-10!/! donors, ampli-

fying other mediators, such as TGF-b, as seen in the CTLA-4-

deficient setting [78]. Notably, TGF-b expression is elevated in

both CD41 and CD4! MLNC during H. polygyrus infection [23],

and TGF-b signalling plays an important role in the T-cell

response to this parasite [79]. As TGF-b has previously been

associated with B-cell-regulatory function [36, 80], and is

responsible for the ability of B cells to induce functional, Foxp3-

expressing Treg cells [60, 81], the involvement of this mediator in

helminth-induced B-cell suppression of pathology remains an

attractive possibility.

A further factor in the suppression may be the uniformly high

expression of CD23 on B cells from chronically infected mice. CD23

is the low affinity IgE receptor, expression of which is known to be

amplified in gastro-intestinal nematode infection [82] and is posi-

tively regulated by levels of IL-4, IL-13 and IgE [83], all of which

are elevated in H. polygyrus infection [53]. Furthermore, CD23

itself can have inhibitory effects on allergen-induced airway

inflammation, with transgenic over-expression of CD23 limiting

airway eosinophilia and airway hyper-responsiveness [84] and

augmented airway responses in CD23!/! mice [85, 86].

An alternative hypothesis is that B-cell down-regulation acts in a

cell contact-dependent manner. FasL-expressing B cells, inducing

apoptosis of antigen-specific T cells, have been reported to down-

regulate airway inflammation [87], and significantly during

S. mansoni infection this pathway of inducing T-cell apoptosis is

enhanced [88]. Together, these observations provide an additional

model of helminth-derived B-cell suppression of T-cell responses

that is likely to be relevant to the study presented here.

In conclusion, we have identified CD191CD23hi B2 B cells, in

addition to CD41CD251 Treg cells [23], as important components

of the adaptive response to H. polygyrus infection, which have the

capacity to down-modulate inflammatory reactions. Indeed, B-cell

recruitment of Treg cells [89] might form a collaborative Treg–

B-cell interaction, which continues throughout the chronic phase of

infection. By including B cells within the interplay of immune

mechanisms that develop during helminth infections, we can

significantly broaden our understanding of the regulatory envir-

onment that forms in chronic infections [90], with important

implications for the prospective exploitation of helminth products

to combat major immune-dependent inflammatory disorders.
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Materials and methods

Animals

Female BALB/c, C57BL/6 and congenic CD45.1-allelic C57BL/6 mice

(B6-CD45.1), 6–8wk old, were housed in individually ventilated

cages). A minimum of five mice per group were used in each

experiment. IL-10-deficient mice were on the C57BL/6 background

[91]. All experimental animals were conducted following institutional

ethical review and with authorisation of UK Home Office licence.

Parasites

Mice were infected with 200 Heligmosomoides polygyrus bakeri

infective L3 larvae using a gavage tube. After 28 days of infection,

the chronicity of infection was confirmed with eggs recoverable

from faecal pellets and gravid worms in the intestinal tract.

Antigens, allergens and antibodies

For H. polygyrus antigen, adult worms were homogenised in PBS,

followed by centrifugation (13 000 g for 10 min). Supernatant

fractions were filtered through a 0.2 mm membrane (Millipore).

Antigen concentrations were determined by the Coomassie Plus

protein assay (Pierce). House dust mite allergen, Der p 1, was

affinity-purified from spent mite medium using the monoclonal

antibody 4C1 (INDOOR Biotechnologies, UK), according to

published procedures [92]. Grade V Ovalbumin (A5503) was

purchased from Sigma, UK.

Allergen-induced airway inflammation

Mice were immunized by i.p. inoculation with 10 mg Der p 1

(C57BL/6) adsorbed to 9% potassium alum (Sigma A7167), and

boosted again with 10 mg Der p 1 in alum i.p. 14 days later. On

days 28 and 31, mice were anaesthetised with 20 mL/g body

weight i.p. of a tribromoethanol anaesthetic, Avertin. Mice were

then given two airway challenges with 10mg Der p 1 in PBS by

the intratracheal route. Mice were killed 24 h after the final

airway challenge to assess airway inflammation. For histopatho-

logical analyses, formalin (4% paraformaldehyde in PBS) fixed

lungs were processed and embedded in paraffin for sectioning.

Hematoxylin and eosin stains (Sigma, 03972) were used for

analysis of airway inflammation and pathological changes.

Induction and assessment of EAE

EAE was induced by immunization with 100 mg of MOG(p35–55)

peptide emulsified in CFA containing 50 mg of heat-killed

Mycobacterium tuberculosis H37RA (Sigma, Poole, Dorset, UK).

The emulsion was administered as two 50-mL subcutaneous

injections, one into each hind leg. Mice also received 200 ng of

pertussis toxin (Speywood Pharmaceuticals, Maidenhead, UK)

intraperitoneally in 0.5 mL of PBS on the same day and 2 days

later. Clinical signs of EAE were assessed daily in a blinded

fashion using a 0–6 scoring system (0, no signs; 1, flaccid tail; 2,

impaired righting reflex and/or gait; 3, partial hind limb

paralysis; 4, total hind limb paralysis; 5, hind limb paralysis with

partial fore limb paralysis; 6, moribund or dead). Recovery

rates are referred to as the percentage of mice with no observable

clinical signs at day 30. Differences in total disease

burdens between groups were analyzed with the Mann–Whitney

U-test.

BALF and differential cell counts

Twenty-four hours after the final challenge, mice were terminally

anaesthetised with ketamine (Vetalar V, Pharmacia & Upjohn)

and Xylazine (Rompun 2%, BAYER). The trachea was cannu-

lated, and internal airspaces lavaged with an initial 500 mL of

sterile PBS, followed by two 350mL washes. Fluids were

centrifuged at 1200 g, and pellets recovered for cellular analysis.

The supernatants of the initial 500 mL of BALF were stored at

!801C for biochemical analyses. Cytospins were prepared by

spinning 5# 105 cells onto poly-(L-lysine) coated slides (BDH)

followed by Diff Quicks (Boehringer, UK) staining. Differential

cell counts were performed at 100# magnification; a minimum

of 200 cells were counted for each slide.

Quantification of allergen-specific antibodies and
total IgE

Allergen-specific responses were determined by ELISA. Multisorp

(NUNC) plates were coated with 4mg/mL Der p 1 diluted in

0.06 M carbonate buffer, and incubated overnight at 41C. Plates

were blocked with 5% BSA (Fraction V, Gibco) for 2 h at 371C.

Serum dilutions were added to plates in TBS, 0.05% Tween

(TBS-T) and incubated overnight at 41C. HRP-conjugated goat

anti-mouse IgG1 (1070–05) and anti-IgG2a (1080–05) (both

from Southern Biotech) and ABTS peroxidase substrate

(50–62–00, KPL) were used to detect allergen-specific IgG

isotypes. Prior to allergen-specific IgE assays, IgG was removed

from sera by overnight incubation with protein-G sepharose

beads; biotinylated anti-mouse IgE (Clone R35 118, BD

Pharmingen), ExtrAvidin-Alkaline phosphatase conjugate

(Sigma, E-2636) and pNPP Substrate (Sigma) were then used.

Total IgE was measured with anti-mouse IgE capture

antibody (clone R35–72, 553413, BD Pharmingen) and biotiny-

lated anti-mouse IgE detection antibody (clone R35–118,

553419), using a monoclonal IgE standard curve (clone 27–74,

553481).
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Cytokine and chemokine (eotaxin) measurements

Cytokines were measured by ELISA according to suppliers’

guidelines as previously described [24]. Capture antibodies used

were: for IL-5, TRFK5, 2mg/mL; IL-6, MP5-20F3, 2 mg/mL; IL-10,

JES5-2A5, 4mg/mL; eotaxin AF420NA, 0.4 mg/mL. Biotinylated

detection antibodies were purchased from Pharmingen

for IL-5 (TRFK4, 2mg/mL), IL-6 (MP532C11, 0.5 mg/mL) IL-10

(SXC-1, 2 mg/mL) or R&D systems (Eotaxin, mAb BAF420,

0.4 mg/mL).

CD41, CD4! and CD191 isolation and adoptive transfer

MLN were removed from mice infected 28 days earlier with 200

H. polygyrus larvae. Single-cell suspensions in RPMI-0.5% normal

mouse serum were made using a cell strainer. For CD41 cell

purification, cell suspensions were incubated with CD4 (L3T4)

microbeads (Miltenyi Biotech, Bisley UK 130–049–201) and

separated on two MACS LS separation columns (130–042–401)

to enhance purity after filtering with pre-separation filters

(130–041–407); 4#106 CD41 or CD4! cells were injected i.v.

into recipient mice. For CD191 cell purification, MLNC were first

incubated with CD19 microbeads (Miltenyi Biotech 130–052/

201) and separated on two MACS LS separation columns as

above. Uninfected, allergen-sensitized mice received cells from

infected donors 7 days before the first airway challenge.

MOG(p35–55)-immunized mice received cells from infected donors

1 day after MOG(p35–55) immunization.

In vitro B-cell culture

Following a previously published protocol [93], single cell

suspensions from the MLN and spleens of naı̈ve and infected

C57/BL6 mice, were prepared in complete Iscove’s modified

Dulbecco’s medium (cIMDM110%FCS11% penicillin/strepto-

mycin11% L-glutamine). Following red blood cell lysis, cell

preparations were labelled with anti-CD19 microbeads and

separated by positive selection on a magnetic column, according

to the manufacturer’s instructions (Miltenyi Biotech). Purified B

cells were cultured in triplicate at 5# 106 cells/mL in cIMDM in

the presence or absence of anti-CD40 (clone FGK-45, 10 mg/mL),

and either CpG (25 mg/mL) or PMA and ionomycin (Sigma UK)

(50 ng/mL and 1 mg/mL respectively). Supernatants were

collected after 5 days and stored at !80oC until used for cytokine

analysis.

Flow cytometry

Cells were stained with antibodies diluted in PBS with 0.5% BSA

(Sigma-Aldrich), 0.05% sodium azide (Sigma-Aldrich) for 20 min

at 41C. For detection of CD41CD45.11 donor cells, monoclonal

rat anti-mouse CD4 (L3T4, clone RM4-5, Isotype Rat IgG2a) and

rat anti mouse-CD45.1 (Ly5.1, Clone A20, Isotype Mouse IgG2a)

were used. The expression of surface markers was analysed on

FACSCalibur or LSRII flow cytometers using FlowJo software

(Tree Star). All fluorochrome-labelled antibodies were obtained

from BD Pharmingen, unless otherwise stated. For detection of

B–cell-associated markers, the monoclonal rat IgG2a antibodies

were used to the following antigens: B220 (clone RA3 6B2), CD5

(Clone 53-7.3), CD19 (Clone 1D3, E-Bioscience), CD21 (Clone

7E9, BioLegend), CD23 (Clone B3B4, BioLegend), CD43 (Clone

1B11, BioLegend), CD69 (H1.2F3), CD86 (GL1) and IgD

(11–26c.2a).

Splenocyte and LN re-stimulation

Spleens or LN were immediately removed from recently killed

mice, sieved into single-cell suspensions in RPMI-0.5% normal

mouse serum using a cell strainer. Cells were incubated in

quadruplicate at 1#106 cells/well of a round-bottomed 96-well

plate in a total of 200mL at 371C. Supernatants were collected,

after 54 h of culture, and stored at !801C for cytokine analysis.

Statistical analysis

The Mann–Whitney test was used for all statistical comparisons,

unless otherwise stated; p values o0.05 were considered

significant.
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